Convert RST to SQL

Drag and drop files here or click to select.
Max file size 100mb.
Uploading progress:

RST vs SQL Format Comparison

Aspect RST (Source Format) SQL (Target Format)
Format Overview
RST
reStructuredText

Lightweight markup language developed by the Python community in 2001. Primary format for Python documentation, Sphinx, and Read the Docs. Emphasizes simplicity and readability with explicit, consistent syntax for technical documentation.

Python Standard Sphinx Native
SQL
Structured Query Language

Standard language for managing relational databases, developed in the 1970s at IBM. Used for creating tables, inserting data, querying, and managing database structures. Universal language for all major database systems.

Database Standard Universal
Technical Specifications
Structure: Plain text with indentation-based syntax
Encoding: UTF-8
Format: Docutils markup language
Processor: Sphinx, Docutils, Pandoc
Extensions: .rst, .rest, .txt
Structure: Declarative query statements
Encoding: UTF-8, ASCII
Format: ANSI/ISO SQL standard
Processor: MySQL, PostgreSQL, SQLite, etc.
Extensions: .sql
Syntax Examples

RST table syntax:

Users Table
===========

+----+----------+------------------+
| id | username | email            |
+====+==========+==================+
| 1  | john     | [email protected] |
+----+----------+------------------+
| 2  | jane     | [email protected] |
+----+----------+------------------+

SQL statements:

-- Users Table
CREATE TABLE users (
    id INTEGER PRIMARY KEY,
    username VARCHAR(255),
    email VARCHAR(255)
);

INSERT INTO users (id, username, email)
VALUES (1, 'john', '[email protected]');

INSERT INTO users (id, username, email)
VALUES (2, 'jane', '[email protected]');
Content Support
  • Headers with underline characters
  • Grid tables with headers
  • Simple tables
  • CSV-table directive
  • List tables
  • Field lists (key-value)
  • Definition lists
  • Inline markup
  • CREATE TABLE statements
  • INSERT statements
  • UPDATE statements
  • SELECT queries
  • Data types and constraints
  • Primary and foreign keys
  • Indexes and views
  • Stored procedures
Advantages
  • Human-readable tables
  • Documentation-friendly
  • Version control friendly
  • Easy to maintain
  • Visual table representation
  • Includes context and descriptions
  • Database-ready format
  • Universal database support
  • Data type enforcement
  • Constraint validation
  • Transactional operations
  • Automated processing
Disadvantages
  • Not machine-processable as data
  • No data type information
  • Manual database entry needed
  • Table syntax can be verbose
  • Database-specific dialects
  • No documentation context
  • Requires database to execute
  • Complex syntax for beginners
Common Uses
  • Database schema documentation
  • Sample data in docs
  • API response examples
  • Configuration tables
  • Reference data documentation
  • Database creation scripts
  • Data migration
  • Seed data population
  • Backup and restore
  • Database schema management
  • Testing fixtures
Best For
  • Documenting data structures
  • Human-readable tables
  • Technical specifications
  • Example data presentation
  • Database operations
  • Data import scripts
  • Schema definitions
  • Automated data loading
Version History
Introduced: 2001 (David Goodger)
Maintained by: Docutils project
Status: Stable, actively maintained
Primary Tool: Sphinx (2008+)
Introduced: 1970s (IBM)
Standardized: ANSI 1986, ISO 1987
Status: Industry standard
Latest: SQL:2023
Software Support
Sphinx: Native support
Docutils: Reference implementation
Pandoc: Full support
IDEs: PyCharm, VS Code (extensions)
MySQL: Full support
PostgreSQL: Full support
SQLite: Full support
SQL Server: Full support

Why Convert RST to SQL?

Converting reStructuredText (RST) documents to SQL enables transforming documented data tables into executable database scripts. This is invaluable when documentation contains sample data, reference tables, or configuration values that need to be loaded into a database.

RST's grid tables provide a natural way to document database structures and sample data in human-readable format. Converting these tables to SQL INSERT statements automates the process of populating databases with documented data, ensuring documentation and actual data remain synchronized.

For teams that maintain data dictionaries or reference data in documentation, RST to SQL conversion creates a direct pipeline from documentation to database. This eliminates manual data entry, reduces errors, and ensures that documented specifications are accurately reflected in the database.

The conversion is particularly useful for generating seed data scripts, test fixtures, and migration scripts from documented specifications. When your RST documentation defines expected data formats and examples, converting to SQL creates ready-to-execute scripts for database population.

Key Benefits of Converting RST to SQL:

  • Automated Data Loading: Convert documented tables directly to INSERT statements
  • Schema Generation: Create table definitions from documented structures
  • Test Data Creation: Generate database fixtures from documentation examples
  • Documentation Sync: Keep database and documentation aligned
  • Migration Scripts: Create data migration SQL from change documentation
  • Seed Data: Populate development databases from documented defaults
  • Multi-Database: Generate SQL for various database systems

Practical Examples

Example 1: Simple Table to INSERT Statements

Input RST file (users.rst):

User Accounts
=============

+----+----------+------------------+--------+
| id | username | email            | active |
+====+==========+==================+========+
| 1  | admin    | [email protected]    | true   |
+----+----------+------------------+--------+
| 2  | john_doe | [email protected] | true   |
+----+----------+------------------+--------+
| 3  | jane_doe | [email protected] | false  |
+----+----------+------------------+--------+

Output SQL file (users.sql):

-- User Accounts
CREATE TABLE user_accounts (
    id INTEGER PRIMARY KEY,
    username VARCHAR(255),
    email VARCHAR(255),
    active BOOLEAN
);

INSERT INTO user_accounts (id, username, email, active)
VALUES (1, 'admin', '[email protected]', TRUE);

INSERT INTO user_accounts (id, username, email, active)
VALUES (2, 'john_doe', '[email protected]', TRUE);

INSERT INTO user_accounts (id, username, email, active)
VALUES (3, 'jane_doe', '[email protected]', FALSE);

Example 2: Configuration Data Extraction

Input RST file (config.rst):

Application Settings
====================

+------------------+-----------------+------------------------+
| setting_key      | setting_value   | description            |
+==================+=================+========================+
| max_connections  | 100             | Maximum DB connections |
+------------------+-----------------+------------------------+
| timeout_seconds  | 30              | Request timeout        |
+------------------+-----------------+------------------------+
| debug_mode       | false           | Enable debug logging   |
+------------------+-----------------+------------------------+

Output SQL file (config.sql):

-- Application Settings
CREATE TABLE application_settings (
    setting_key VARCHAR(255) PRIMARY KEY,
    setting_value VARCHAR(255),
    description TEXT
);

INSERT INTO application_settings (setting_key, setting_value, description)
VALUES ('max_connections', '100', 'Maximum DB connections');

INSERT INTO application_settings (setting_key, setting_value, description)
VALUES ('timeout_seconds', '30', 'Request timeout');

INSERT INTO application_settings (setting_key, setting_value, description)
VALUES ('debug_mode', 'false', 'Enable debug logging');

Example 3: Product Catalog Migration

Input RST file (products.rst):

Product Catalog
===============

+---------+----------------+-------+----------+
| sku     | name           | price | category |
+=========+================+=======+==========+
| PRD-001 | Widget Pro     | 29.99 | Tools    |
+---------+----------------+-------+----------+
| PRD-002 | Gadget Plus    | 49.99 | Devices  |
+---------+----------------+-------+----------+
| PRD-003 | Super Gizmo    | 19.99 | Tools    |
+---------+----------------+-------+----------+

Output SQL file (products.sql):

-- Product Catalog
CREATE TABLE product_catalog (
    sku VARCHAR(50) PRIMARY KEY,
    name VARCHAR(255) NOT NULL,
    price DECIMAL(10,2),
    category VARCHAR(100)
);

INSERT INTO product_catalog (sku, name, price, category)
VALUES ('PRD-001', 'Widget Pro', 29.99, 'Tools');

INSERT INTO product_catalog (sku, name, price, category)
VALUES ('PRD-002', 'Gadget Plus', 49.99, 'Devices');

INSERT INTO product_catalog (sku, name, price, category)
VALUES ('PRD-003', 'Super Gizmo', 19.99, 'Tools');

Frequently Asked Questions (FAQ)

Q: How are RST tables converted to SQL?

A: RST grid tables are parsed to extract column headers (which become column names) and data rows (which become INSERT statements). The table title typically becomes the table name in the CREATE TABLE statement.

Q: What SQL dialect is generated?

A: The converter generates ANSI SQL that is compatible with most database systems including MySQL, PostgreSQL, SQLite, and SQL Server. Specific dialect options may be available depending on the converter settings.

Q: Are data types inferred automatically?

A: Yes, basic data types are inferred from the data values. Numbers become INTEGER or DECIMAL, true/false become BOOLEAN, and text values become VARCHAR. For precise control, you can add type hints in your RST documentation.

Q: Can I convert only INSERT statements without CREATE TABLE?

A: Yes, the converter can generate INSERT-only SQL for adding data to existing tables. This is useful when populating established database schemas with documented data.

Q: How are NULL values handled?

A: Empty cells in RST tables are converted to NULL values in SQL statements. If you need empty strings instead, use explicit empty string markers in your documentation.

Q: Can I specify primary keys in RST?

A: Columns named 'id' or ending with '_id' are typically treated as primary keys. You can also use RST field lists or comments to specify primary key columns explicitly in your documentation.

Q: What about special characters in data?

A: Special characters including quotes, backslashes, and SQL reserved words are properly escaped in the generated SQL to prevent injection issues and syntax errors.

Q: Can this be used for database migrations?

A: Yes! Document your migration data in RST format, then convert to SQL migration scripts. This provides both human-readable documentation and executable SQL in a single workflow.