Convert RST to JSON

Drag and drop files here or click to select.
Max file size 100mb.
Uploading progress:

RST vs JSON Format Comparison

Aspect RST (Source Format) JSON (Target Format)
Format Overview
RST
reStructuredText

Lightweight markup language developed by the Python community in 2001. Primary format for Python documentation, Sphinx, and Read the Docs. Emphasizes simplicity and readability with explicit, consistent syntax for technical documentation.

Python Standard Sphinx Native
JSON
JavaScript Object Notation

Lightweight data interchange format based on JavaScript object syntax. Created by Douglas Crockford in the early 2000s. The de facto standard for web APIs, configuration, and data exchange between applications and services.

API Standard Universal Data Format
Technical Specifications
Structure: Plain text with indentation-based syntax
Encoding: UTF-8
Format: Docutils markup language
Processor: Sphinx, Docutils, Pandoc
Extensions: .rst, .rest, .txt
Structure: Key-value pairs, arrays, nested objects
Encoding: UTF-8 (required)
Standard: ECMA-404, RFC 8259
Data Types: String, number, boolean, null, array, object
Extensions: .json
Syntax Comparison

RST documentation structure:

API Documentation
=================

User Endpoint
-------------

GET /api/users

Returns a list of users.

Parameters:

limit
    Maximum number of results.
    Type: integer
    Default: 10

offset
    Number of results to skip.
    Type: integer
    Default: 0

JSON data structure:

{
  "title": "API Documentation",
  "sections": [
    {
      "name": "User Endpoint",
      "method": "GET",
      "path": "/api/users",
      "description": "Returns a list of users",
      "parameters": [
        {
          "name": "limit",
          "type": "integer",
          "default": 10,
          "description": "Maximum results"
        },
        {
          "name": "offset",
          "type": "integer",
          "default": 0,
          "description": "Results to skip"
        }
      ]
    }
  ]
}
Content Support
  • Headers with underline characters
  • Inline markup (bold, italic, code)
  • Directives (code-block, note, warning)
  • Cross-references and citations
  • Tables (grid and simple)
  • Autodoc for Python code
  • Math formulas (LaTeX)
  • Sphinx extensions ecosystem
  • Objects (key-value pairs)
  • Arrays (ordered lists)
  • Strings (UTF-8 text)
  • Numbers (integer and float)
  • Booleans (true/false)
  • Null values
  • Nested structures
  • Schema validation (JSON Schema)
Advantages
  • Python documentation standard
  • Sphinx integration (Read the Docs)
  • Autodoc for API documentation
  • Large Python ecosystem
  • Consistent, strict syntax
  • Mature tooling
  • Universal language support
  • Web API standard
  • Native JavaScript support
  • Machine-readable
  • Schema validation available
  • Compact and efficient
  • Easy to parse and generate
Disadvantages
  • Strict indentation requirements
  • Complex directive syntax
  • Limited outside Python ecosystem
  • Steeper learning curve
  • Not machine-readable
  • No comments allowed
  • Strict syntax (commas, quotes)
  • No date/time type
  • No binary data support
  • Less readable than YAML
Common Uses
  • Python documentation
  • Sphinx projects
  • Read the Docs hosting
  • API documentation
  • Technical specifications
  • REST API responses
  • Configuration files
  • Data storage (NoSQL)
  • Web application data
  • Package manifests (package.json)
  • Inter-service communication
Best For
  • Python projects
  • Sphinx-based documentation
  • API reference docs
  • Read the Docs publishing
  • API data exchange
  • Configuration storage
  • Database documents
  • Cross-platform data
Version History
Introduced: 2001 (David Goodger)
Maintained by: Docutils project
Status: Stable, actively maintained
Primary Tool: Sphinx (2008+)
Created: 2001 (Douglas Crockford)
ECMA-404: 2013 (standardized)
RFC 8259: 2017 (current spec)
Status: Universal web standard
Tool Support
Sphinx: Native support
Docutils: Reference implementation
Pandoc: Full support
IDEs: PyCharm, VS Code (extensions)
JavaScript: JSON.parse/stringify
Python: json module (built-in)
All Languages: Native or library support
Tools: jq, JSONLint, Postman

Why Convert RST to JSON?

Converting reStructuredText (RST) documents to JSON transforms your documentation into structured data that applications can consume programmatically. This bridges the gap between human-readable documentation and machine-readable API data.

JSON is the universal data interchange format, supported by every programming language and used by virtually every web API. By converting RST documentation to JSON, you can feed your documentation content into search engines, content management systems, and documentation platforms.

The conversion is particularly valuable for creating searchable documentation databases, generating API specification files, or building dynamic documentation sites that load content from JSON endpoints. Your Sphinx documentation becomes a data source for modern web applications.

JSON output preserves the hierarchical structure of your RST documents. Sections become nested objects, lists become JSON arrays, and metadata is captured as key-value pairs. This structured representation enables powerful querying and transformation of your documentation content.

Key Benefits of Converting RST to JSON:

  • API Integration: Feed documentation into APIs and services
  • Search Indexes: Build searchable documentation databases
  • Dynamic Sites: Load documentation content via AJAX
  • Universal Format: Works with any programming language
  • Schema Validation: Validate structure with JSON Schema
  • Data Processing: Transform and analyze documentation
  • NoSQL Storage: Store docs in MongoDB, CouchDB, etc.

Practical Examples

Example 1: Documentation as Data

Input RST file (api_docs.rst):

API Reference
=============

Authentication
--------------

All requests require an API key.

Header: ``Authorization: Bearer <token>``

Endpoints
---------

GET /users
    Returns list of users.

POST /users
    Creates a new user.

Output JSON file (api_docs.json):

{
  "title": "API Reference",
  "sections": [
    {
      "title": "Authentication",
      "content": "All requests require an API key.",
      "code": "Authorization: Bearer <token>"
    },
    {
      "title": "Endpoints",
      "endpoints": [
        {
          "method": "GET",
          "path": "/users",
          "description": "Returns list of users"
        },
        {
          "method": "POST",
          "path": "/users",
          "description": "Creates a new user"
        }
      ]
    }
  ]
}

Example 2: Searchable Index

Input RST documentation project:

docs/
├── getting-started.rst
├── installation.rst
├── configuration.rst
└── api-reference.rst

Output: Search index JSON:

{
  "documents": [
    {
      "id": "getting-started",
      "title": "Getting Started",
      "content": "Welcome to...",
      "keywords": ["start", "guide", "tutorial"]
    },
    {
      "id": "installation",
      "title": "Installation",
      "content": "Install using pip...",
      "keywords": ["install", "setup", "pip"]
    }
  ]
}

Example 3: Dynamic Documentation Site

Use Case: Build a React/Vue documentation site that loads content from JSON.

Workflow:
1. Write documentation in RST
2. Convert to JSON during build
3. Frontend loads JSON via API
4. Render documentation dynamically

Benefits:
- Single page application (SPA)
- Client-side search
- Dynamic filtering
- No page reloads
- Modern UX

Frequently Asked Questions (FAQ)

Q: What is JSON format?

A: JSON (JavaScript Object Notation) is a lightweight data interchange format. It uses human-readable text to represent data objects with key-value pairs and arrays. JSON is the standard format for web APIs and is supported by virtually every programming language.

Q: How is RST structure mapped to JSON?

A: RST headers become JSON object keys, sections become nested objects, lists become arrays, and text content becomes string values. The hierarchical nature of RST documents maps well to JSON's nested object structure.

Q: Is formatting preserved in JSON?

A: JSON captures the document structure and content, but inline formatting (bold, italic) may be converted to plain text or marked with special syntax. The conversion focuses on preserving data structure rather than presentation.

Q: Can I validate the JSON output?

A: Yes, you can use JSON Schema to define and validate the structure of your converted documentation. Tools like ajv (JavaScript) or jsonschema (Python) can validate JSON against a schema you define.

Q: How do I use JSON documentation in a web app?

A: Load JSON with fetch() or axios in JavaScript, then render it in your frontend framework. React, Vue, and Angular all handle JSON natively. You can build dynamic documentation sites that load content on demand.

Q: Can I convert JSON back to RST?

A: While possible with custom code, it's not straightforward because JSON doesn't capture all RST formatting. You'd need to define a mapping from your JSON structure back to RST syntax. Generally, treat RST as the source and JSON as a derived format.

Q: How do I parse JSON in different languages?

A: Python: json.loads(). JavaScript: JSON.parse(). Java: Jackson or Gson libraries. Ruby: JSON.parse(). Go: encoding/json package. Virtually every language has built-in or standard library JSON support.

Q: Is JSON good for large documentation sets?

A: JSON works well for documentation, but consider splitting large docs into multiple JSON files for better performance. You can create an index file that references individual document files, loading them on demand.