Convert RST to CSV

Drag and drop files here or click to select.
Max file size 100mb.
Uploading progress:

RST vs CSV Format Comparison

Aspect RST (Source Format) CSV (Target Format)
Format Overview
RST
reStructuredText

Lightweight markup language developed by the Python community in 2001. Primary format for Python documentation, Sphinx, and Read the Docs. Emphasizes simplicity and readability with explicit, consistent syntax for technical documentation.

Python Standard Sphinx Native
CSV
Comma-Separated Values

Simple text format for storing tabular data where each line represents a row and values are separated by commas. Universal format supported by all spreadsheet applications, databases, and data analysis tools.

Universal Data Spreadsheet Ready
Technical Specifications
Structure: Plain text with indentation-based syntax
Encoding: UTF-8
Format: Docutils markup language
Processor: Sphinx, Docutils, Pandoc
Extensions: .rst, .rest, .txt
Structure: Plain text rows with delimiters
Encoding: UTF-8 or ASCII
Format: RFC 4180 standard
Processor: Excel, Google Sheets, Pandas
Extensions: .csv, .txt
Syntax Examples

RST table syntax:

+----------+--------+-------+
| Name     | Age    | Role  |
+==========+========+=======+
| Alice    | 30     | Dev   |
+----------+--------+-------+
| Bob      | 25     | QA    |
+----------+--------+-------+

Simple table:
======  ====  ====
Name    Age   Role
======  ====  ====
Alice   30    Dev
Bob     25    QA
======  ====  ====

CSV output:

Name,Age,Role
Alice,30,Dev
Bob,25,QA

With quotes for special values:
"Name","Age","Role"
"Alice, Jr.",30,"Dev, Senior"
"Bob ""The Builder""",25,"QA"
Content Support
  • Headers with underline characters
  • Inline markup (bold, italic, code)
  • Directives (code-block, note, warning)
  • Cross-references and citations
  • Tables (grid and simple)
  • Autodoc for Python code
  • Math formulas (LaTeX)
  • Sphinx extensions ecosystem
  • Rows and columns
  • Text values
  • Numbers (stored as text)
  • Quoted strings
  • Special characters (escaped)
  • Multi-line values (quoted)
  • Empty cells
  • Header row (by convention)
Advantages
  • Python documentation standard
  • Sphinx integration (Read the Docs)
  • Autodoc for API documentation
  • Large Python ecosystem
  • Consistent, strict syntax
  • Mature tooling
  • Universal spreadsheet support
  • Extremely simple format
  • Human readable
  • Easy to parse programmatically
  • Works with any data tool
  • Small file size
  • Database import/export
Disadvantages
  • Strict indentation requirements
  • Complex directive syntax
  • Limited outside Python ecosystem
  • Steeper learning curve
  • Less intuitive syntax
  • No data type information
  • No formatting or styling
  • No formulas or calculations
  • No multiple sheets
  • Delimiter conflicts
  • Encoding issues possible
Common Uses
  • Python documentation
  • Sphinx projects
  • Read the Docs hosting
  • API documentation
  • Technical specifications
  • Spreadsheet data exchange
  • Database import/export
  • Data analysis pipelines
  • Configuration data
  • Bulk data transfer
  • Log file analysis
Best For
  • Python projects
  • Sphinx-based documentation
  • API reference docs
  • Read the Docs publishing
  • Data extraction from docs
  • Spreadsheet analysis
  • Database imports
  • Data migration
Version History
Introduced: 2001 (David Goodger)
Maintained by: Docutils project
Status: Stable, actively maintained
Primary Tool: Sphinx (2008+)
Introduced: 1972 (early computing)
Standardized: RFC 4180 (2005)
Status: Universal standard
Primary Tool: All spreadsheet applications
Software Support
Sphinx: Native support
Docutils: Reference implementation
Pandoc: Full support
IDEs: PyCharm, VS Code (extensions)
Excel: Native import/export
Google Sheets: Native support
Python Pandas: read_csv(), to_csv()
Databases: Universal import

Why Convert RST to CSV?

Converting reStructuredText (RST) documents to CSV format allows you to extract tabular data from Python documentation and Sphinx projects for use in spreadsheets and data analysis tools. This is essential when you need to work with configuration tables, API parameter lists, or any structured data embedded in documentation.

RST documents often contain valuable tabular data such as configuration options, API endpoints, feature comparisons, and changelog entries. By converting to CSV, you can import this data into Excel, Google Sheets, or Pandas for analysis, filtering, and manipulation that isn't possible in document form.

This conversion is particularly useful for quality assurance teams who need to track feature documentation, project managers analyzing API coverage, or data analysts extracting structured information from technical specifications. CSV format provides a clean, portable representation of tabular data.

For documentation maintainers, the RST to CSV conversion enables round-trip workflows where you can export tables to spreadsheets for collaborative editing, then regenerate the RST tables from the updated CSV data. This simplifies managing large documentation tables across teams.

Key Benefits of Converting RST to CSV:

  • Spreadsheet Ready: Open directly in Excel or Google Sheets
  • Data Analysis: Import into Pandas, R, or other analysis tools
  • Database Import: Load tabular data into databases
  • Easy Filtering: Sort and filter documentation data
  • Collaboration: Share data with non-technical stakeholders
  • Automation: Process documentation tables programmatically
  • Universal Format: Works with virtually any tool

Practical Examples

Example 1: Configuration Options Table

Input RST file (config.rst):

Configuration Options
=====================

+----------------+----------+-------------------------+
| Option         | Default  | Description             |
+================+==========+=========================+
| debug          | false    | Enable debug logging    |
+----------------+----------+-------------------------+
| timeout        | 30       | Request timeout (sec)   |
+----------------+----------+-------------------------+
| max_retries    | 3        | Maximum retry attempts  |
+----------------+----------+-------------------------+

Output CSV file (config.csv):

Option,Default,Description
debug,false,Enable debug logging
timeout,30,Request timeout (sec)
max_retries,3,Maximum retry attempts

Example 2: API Endpoints Reference

Input RST file (api.rst):

API Endpoints
=============

========  ==============  =================
Method    Endpoint        Description
========  ==============  =================
GET       /users          List all users
POST      /users          Create new user
GET       /users/{id}     Get user by ID
PUT       /users/{id}     Update user
DELETE    /users/{id}     Delete user
========  ==============  =================

Output CSV file (api.csv):

Method,Endpoint,Description
GET,/users,List all users
POST,/users,Create new user
GET,/users/{id},Get user by ID
PUT,/users/{id},Update user
DELETE,/users/{id},Delete user

Example 3: Feature Comparison Matrix

Input RST file (features.rst):

Feature Comparison
==================

+------------------+------+------+------------+
| Feature          | Free | Pro  | Enterprise |
+==================+======+======+============+
| Basic API        | Yes  | Yes  | Yes        |
+------------------+------+------+------------+
| Advanced Reports | No   | Yes  | Yes        |
+------------------+------+------+------------+
| Custom Branding  | No   | No   | Yes        |
+------------------+------+------+------------+
| Priority Support | No   | Yes  | Yes        |
+------------------+------+------+------------+

Output CSV file (features.csv):

Feature,Free,Pro,Enterprise
Basic API,Yes,Yes,Yes
Advanced Reports,No,Yes,Yes
Custom Branding,No,No,Yes
Priority Support,No,Yes,Yes

Frequently Asked Questions (FAQ)

Q: What is CSV format?

A: CSV (Comma-Separated Values) is a simple text format for storing tabular data. Each line represents a row, and values are separated by commas. It's universally supported by spreadsheet applications, databases, and programming languages.

Q: Are all RST tables converted to CSV?

A: The conversion extracts data from RST grid tables and simple tables. Complex nested structures or tables with merged cells may require manual cleanup. Each table in the RST document becomes a separate CSV section or file.

Q: What happens to non-table content?

A: Non-tabular content (paragraphs, headers, code blocks) is typically excluded from CSV output since CSV is purely for tabular data. If you need all content, consider converting to a different format first.

Q: How are special characters handled?

A: Values containing commas, quotes, or newlines are automatically enclosed in double quotes following RFC 4180. Internal quotes are escaped by doubling them (""). This ensures compatibility with spreadsheet applications.

Q: Can I open the CSV in Excel?

A: Yes, CSV files open directly in Excel, Google Sheets, LibreOffice Calc, and other spreadsheet applications. The data will appear in columns ready for sorting, filtering, and analysis.

Q: What encoding is used?

A: Output uses UTF-8 encoding to preserve special characters from your RST source. When opening in Excel on Windows, you may need to use the import wizard and specify UTF-8 encoding for proper character display.

Q: How do I import CSV into a database?

A: Most databases support CSV import. In PostgreSQL use COPY command, in MySQL use LOAD DATA INFILE, and in SQLite use .import. You'll need to create a table with matching columns first.

Q: Can I convert CSV back to RST?

A: Yes, you can generate RST tables from CSV data using Python scripts or tools like csv-to-rst. This enables round-trip editing where you modify tables in spreadsheets and regenerate documentation.