Convert ORG to SQL
Max file size 100mb.
ORG vs SQL Format Comparison
| Aspect | ORG (Source Format) | SQL (Target Format) |
|---|---|---|
| Format Overview |
ORG
Emacs Org-mode
Plain text markup format created for Emacs in 2003. Designed for note-taking, task management, project planning, and literate programming. Features hierarchical structure with collapsible sections, TODO states, scheduling, and powerful tables with formulas. Emacs Native Spreadsheet Tables |
SQL
Structured Query Language
Domain-specific language designed for managing and manipulating relational databases. First developed in the 1970s at IBM, SQL is the standard language for database operations including data definition, manipulation, and querying. Database Standard Data Management |
| Technical Specifications |
Structure: Hierarchical outline with * headers
Encoding: UTF-8 Format: Plain text with markup Processor: Emacs Org-mode, Pandoc Extensions: .org |
Structure: Declarative statements
Encoding: UTF-8 (database dependent) Format: Text-based query language Processor: MySQL, PostgreSQL, SQLite, etc. Extensions: .sql |
| Syntax Examples |
Org-mode table: #+TBLNAME: employees | id | name | department | salary | |----+---------+------------+--------| | 1 | Alice | Engineering| 75000 | | 2 | Bob | Marketing | 65000 | | 3 | Carol | Engineering| 80000 | | 4 | David | Sales | 70000 | * Notes Employee data updated Q4 2024. |
SQL statements: -- Table: employees
CREATE TABLE employees (
id INTEGER PRIMARY KEY,
name VARCHAR(255),
department VARCHAR(255),
salary INTEGER
);
INSERT INTO employees VALUES
(1, 'Alice', 'Engineering', 75000),
(2, 'Bob', 'Marketing', 65000),
(3, 'Carol', 'Engineering', 80000),
(4, 'David', 'Sales', 70000);
|
| Content Support |
|
|
| Advantages |
|
|
| Disadvantages |
|
|
| Common Uses |
|
|
| Best For |
|
|
| Version History |
Introduced: 2003 (Carsten Dominik)
Current Version: 9.6+ (2024) Status: Active development Primary Tool: GNU Emacs |
Introduced: 1974 (IBM)
Standard: ISO/IEC 9075 (SQL:2023) Status: Active development Primary Tools: MySQL, PostgreSQL, SQLite |
| Software Support |
Emacs: Native support (Org-mode)
Vim/Neovim: org.nvim, vim-orgmode VS Code: Org Mode extension Other: Logseq, Obsidian (plugins) |
Databases: MySQL, PostgreSQL, SQLite, Oracle
Tools: DBeaver, pgAdmin, MySQL Workbench Languages: All major programming languages Cloud: AWS RDS, Azure SQL, Google Cloud SQL |
Why Convert ORG to SQL?
Converting Org-mode tables to SQL is invaluable when you need to import structured data from your Org files into a relational database. Org-mode's powerful table feature makes it easy to maintain data in a human-readable format, and SQL conversion enables database import.
This conversion is particularly useful for developers and data analysts who document their data structures in Org-mode. You can design your database schema visually using Org tables, then generate the SQL statements needed to create and populate the actual database.
Org-mode's spreadsheet-like tables are excellent for data entry and manipulation within Emacs. Converting to SQL allows you to transfer this data to production databases, create seed data for development environments, or generate migration scripts.
The conversion bridges the gap between documentation and implementation. Data documented in Org tables can be converted directly to INSERT statements, eliminating manual data entry and reducing errors.
Key Benefits of Converting ORG to SQL:
- Database Import: Directly import Org table data into databases
- Schema Generation: Create table definitions from Org tables
- Seed Data: Generate INSERT statements for development databases
- Migration Scripts: Create data migration SQL from documented tables
- Documentation to Code: Bridge documentation and implementation
- Error Reduction: Eliminate manual data entry mistakes
- Version Control: Track data changes in Org files, deploy via SQL
Practical Examples
Example 1: Employee Database
Input ORG file (employees.org):
#+TITLE: Employee Database #+TBLNAME: employees | id | name | email | department | hire_date | |----+--------------+----------------------+-------------+------------| | 1 | Alice Smith | [email protected] | Engineering | 2022-01-15 | | 2 | Bob Johnson | [email protected] | Marketing | 2021-06-01 | | 3 | Carol White | [email protected] | Engineering | 2023-03-10 | | 4 | David Brown | [email protected] | Sales | 2022-09-20 |
Output SQL file (employees.sql):
-- Generated from employees.org
-- Table: employees
CREATE TABLE IF NOT EXISTS employees (
id INTEGER PRIMARY KEY,
name VARCHAR(255),
email VARCHAR(255),
department VARCHAR(255),
hire_date DATE
);
INSERT INTO employees (id, name, email, department, hire_date) VALUES
(1, 'Alice Smith', '[email protected]', 'Engineering', '2022-01-15'),
(2, 'Bob Johnson', '[email protected]', 'Marketing', '2021-06-01'),
(3, 'Carol White', '[email protected]', 'Engineering', '2023-03-10'),
(4, 'David Brown', '[email protected]', 'Sales', '2022-09-20');
Example 2: Product Inventory
Input ORG file (inventory.org):
#+TITLE: Product Inventory #+TBLNAME: products | sku | name | price | quantity | category | |----------+----------------+--------+----------+-------------| | SKU-001 | Laptop Pro | 1299.99| 50 | Electronics | | SKU-002 | Wireless Mouse | 29.99| 200 | Accessories | | SKU-003 | USB-C Hub | 49.99| 150 | Accessories | | SKU-004 | Monitor 27" | 399.99| 75 | Electronics |
Output SQL file (inventory.sql):
-- Generated from inventory.org
-- Table: products
CREATE TABLE IF NOT EXISTS products (
sku VARCHAR(50) PRIMARY KEY,
name VARCHAR(255),
price DECIMAL(10,2),
quantity INTEGER,
category VARCHAR(255)
);
INSERT INTO products (sku, name, price, quantity, category) VALUES
('SKU-001', 'Laptop Pro', 1299.99, 50, 'Electronics'),
('SKU-002', 'Wireless Mouse', 29.99, 200, 'Accessories'),
('SKU-003', 'USB-C Hub', 49.99, 150, 'Accessories'),
('SKU-004', 'Monitor 27"', 399.99, 75, 'Electronics');
Example 3: Configuration Settings
Input ORG file (config.org):
#+TITLE: Application Configuration #+TBLNAME: app_settings | key | value | description | |------------------+----------------+--------------------------| | app.name | MyApplication | Application display name | | app.version | 2.1.0 | Current version | | debug.enabled | false | Debug mode flag | | cache.ttl | 3600 | Cache TTL in seconds | | max.connections | 100 | Maximum DB connections |
Output SQL file (config.sql):
-- Generated from config.org
-- Table: app_settings
CREATE TABLE IF NOT EXISTS app_settings (
key VARCHAR(255) PRIMARY KEY,
value VARCHAR(255),
description TEXT
);
INSERT INTO app_settings (key, value, description) VALUES
('app.name', 'MyApplication', 'Application display name'),
('app.version', '2.1.0', 'Current version'),
('debug.enabled', 'false', 'Debug mode flag'),
('cache.ttl', '3600', 'Cache TTL in seconds'),
('max.connections', '100', 'Maximum DB connections');
Frequently Asked Questions (FAQ)
Q: What is SQL?
A: SQL (Structured Query Language) is the standard language for managing relational databases. It's used to create tables, insert data, query information, and manage database structures. SQL is supported by all major database systems including MySQL, PostgreSQL, SQLite, and Oracle.
Q: How are Org tables converted to SQL?
A: Org tables are converted to SQL CREATE TABLE statements (using the header row for column names) and INSERT statements (using the data rows). The table name can come from #+TBLNAME or the filename.
Q: What about data types?
A: Data types are inferred from the content. Numbers become INTEGER or DECIMAL, dates become DATE, and text becomes VARCHAR. You may need to adjust the generated SQL for specific database requirements.
Q: Which SQL dialect is generated?
A: The converter generates standard SQL that works with most databases. Minor adjustments may be needed for specific database features like auto-increment (MySQL) vs SERIAL (PostgreSQL).
Q: Can I convert multiple tables?
A: Yes, if your Org file contains multiple tables (each with a #+TBLNAME), the converter will generate CREATE TABLE and INSERT statements for each one in the output SQL file.
Q: How are special characters handled?
A: Special characters in string values are properly escaped to prevent SQL injection and syntax errors. Single quotes are escaped as double quotes, and other special characters are handled appropriately.
Q: What about NULL values?
A: Empty cells in Org tables can be converted to SQL NULL values or empty strings, depending on the conversion settings. This ensures your data integrity requirements are met.
Q: Can I import the SQL directly into my database?
A: Yes! The generated SQL file can be executed directly using your database client: `mysql -u user -p database < file.sql` for MySQL, `psql database < file.sql` for PostgreSQL, or `.read file.sql` in SQLite.