Convert ODT to SQL

Drag and drop files here or click to select.
Max file size 100mb.
Uploading progress:

ODT vs SQL Format Comparison

Aspect ODT (Source Format) SQL (Target Format)
Format Overview
ODT
OpenDocument Text

Open standard document format used by LibreOffice Writer and Apache OpenOffice. Based on XML inside a ZIP container. ISO/IEC 26300 standard for office documents with rich formatting support.

Open Standard ISO/IEC 26300
SQL
Structured Query Language

Standard language for managing and manipulating relational databases. Used for creating, reading, updating, and deleting data. SQL statements define database structure and perform data operations across all major database systems.

ANSI/ISO Standard Database Language
Technical Specifications
Structure: ZIP archive with XML
Encoding: UTF-8 XML
Format: OASIS OpenDocument
Data Model: Document-centric
Extensions: .odt
Structure: Text-based statements
Encoding: UTF-8 or ASCII
Format: SQL-92/99/2003/2016
Data Model: Relational tables
Extensions: .sql
Statement Types
Content: Rich formatted text
Structure: Paragraphs, headings
Media: Embedded images
DDL: CREATE, ALTER, DROP
DML: INSERT, UPDATE, DELETE
DQL: SELECT queries
DCL: GRANT, REVOKE
TCL: COMMIT, ROLLBACK
Content Support
  • Rich text formatting
  • Paragraphs and headings
  • Tables with styling
  • Embedded images
  • Headers and footers
  • Styles and templates
  • Table definitions (CREATE)
  • Data insertion (INSERT)
  • Schema modifications
  • Constraints and indexes
  • Stored procedures
  • Views and triggers
  • Comments (-- or /* */)
Advantages
  • Open international standard
  • WYSIWYG editing
  • Rich formatting options
  • Wide software support
  • Compressed storage
  • Database portability
  • Data migration ready
  • Structured data storage
  • Transaction support
  • Query optimization
  • ACID compliance
  • Relational integrity
Disadvantages
  • Not for data storage
  • Complex internal structure
  • Requires office software
  • Overkill for tabular data
  • Vendor-specific dialects
  • Limited formatting options
  • Plain text only
  • Requires database knowledge
  • Syntax differences (MySQL vs PostgreSQL)
Common Uses
  • Office documents
  • Reports and papers
  • Business correspondence
  • Document editing
  • Database migrations
  • Data backups
  • Seeding test data
  • Schema versioning
  • ETL processes
  • Database initialization
Database Support
  • LibreOffice (all platforms)
  • OpenOffice
  • Microsoft Word
  • Google Docs
  • MySQL / MariaDB
  • PostgreSQL
  • SQLite
  • Microsoft SQL Server
  • Oracle Database
  • All relational databases
Syntax Example
N/A: Binary/XML format
CREATE: CREATE TABLE users (id INT);
INSERT: INSERT INTO users VALUES (1);
SELECT: SELECT * FROM users;
UPDATE: UPDATE users SET name='John';

Why Convert ODT to SQL?

Converting ODT documents to SQL transforms document content into database-ready INSERT statements. This conversion is essential when you need to import structured data from documents into relational databases for querying, analysis, and long-term storage.

SQL (Structured Query Language) is the universal language of databases. By converting ODT to SQL, you can take tabular data from office documents and populate database tables automatically. This is particularly useful for migrating data, creating test datasets, or initializing application databases.

The conversion process extracts tables and structured content from your ODT file and generates SQL INSERT statements with proper escaping and formatting. The resulting .sql file can be executed directly against MySQL, PostgreSQL, SQLite, or any SQL database to populate tables with your document data.

Key Benefits of Converting ODT to SQL:

  • Database Import: Direct import into MySQL, PostgreSQL, SQLite, and other databases
  • Data Migration: Move spreadsheet/document data into relational databases
  • Test Data Generation: Create realistic database seed data from documents
  • Schema Automation: Auto-generate CREATE TABLE and INSERT statements
  • Version Control: SQL files work perfectly with Git for database versioning
  • Backup Format: Human-readable backup that's easy to restore

Practical Examples

Example 1: Employee Directory to Database

Input ODT file (employees.odt) with table:

Employee Directory

| ID | Name          | Department  | Salary  |
|----|---------------|-------------|---------|
| 1  | Alice Johnson | Engineering | 95000   |
| 2  | Bob Williams  | Marketing   | 75000   |
| 3  | Carol Davis   | Sales       | 82000   |

Output SQL file (employees.sql):

-- Employee Directory
-- Generated from employees.odt

CREATE TABLE IF NOT EXISTS employees (
    id INT PRIMARY KEY,
    name VARCHAR(255) NOT NULL,
    department VARCHAR(100),
    salary DECIMAL(10, 2)
);

INSERT INTO employees (id, name, department, salary) VALUES
(1, 'Alice Johnson', 'Engineering', 95000.00),
(2, 'Bob Williams', 'Marketing', 75000.00),
(3, 'Carol Davis', 'Sales', 82000.00);

Example 2: Product Catalog Migration

Input ODT file (products.odt):

Product Catalog 2025

| SKU    | Product Name      | Price  | Stock |
|--------|-------------------|--------|-------|
| LAP001 | Gaming Laptop     | 1299.99| 45    |
| MOU042 | Wireless Mouse    | 29.99  | 230   |
| KEY088 | Mechanical KB     | 149.99 | 78    |

Output SQL file (products.sql):

-- Product Catalog 2025
-- Table: products

CREATE TABLE IF NOT EXISTS products (
    sku VARCHAR(50) PRIMARY KEY,
    product_name VARCHAR(255) NOT NULL,
    price DECIMAL(10, 2) NOT NULL,
    stock INT DEFAULT 0
);

INSERT INTO products (sku, product_name, price, stock) VALUES
('LAP001', 'Gaming Laptop', 1299.99, 45),
('MOU042', 'Wireless Mouse', 29.99, 230),
('KEY088', 'Mechanical KB', 149.99, 78);

Example 3: Test Data Seeding

Input ODT file (test-users.odt):

Test User Accounts

| Username | Email              | Role  | Active |
|----------|--------------------|-------|--------|
| admin    | [email protected]     | admin | true   |
| john_doe | [email protected]      | user  | true   |
| jane_s   | [email protected]      | user  | false  |

Output SQL file (test-users.sql):

-- Test User Accounts
-- Database seed data

CREATE TABLE IF NOT EXISTS users (
    username VARCHAR(50) PRIMARY KEY,
    email VARCHAR(255) UNIQUE NOT NULL,
    role VARCHAR(20) DEFAULT 'user',
    active BOOLEAN DEFAULT true
);

INSERT INTO users (username, email, role, active) VALUES
('admin', '[email protected]', 'admin', true),
('john_doe', '[email protected]', 'user', true),
('jane_s', '[email protected]', 'user', false);

-- Usage: mysql -u root -p database_name < test-users.sql

Frequently Asked Questions (FAQ)

Q: What is SQL format?

A: SQL (Structured Query Language) is a standard programming language for managing relational databases. An SQL file contains statements like CREATE TABLE (define structure) and INSERT INTO (add data) that can be executed to populate databases. It's the universal format for database migrations and backups.

Q: How are ODT tables converted to SQL?

A: Tables in your ODT document are converted to SQL INSERT statements. The first row typically becomes column names, and subsequent rows become data values. The converter generates both CREATE TABLE (structure) and INSERT INTO (data) statements with proper data types and escaping.

Q: Which databases support the generated SQL?

A: The converter generates standard SQL-92 compatible statements that work with MySQL, PostgreSQL, SQLite, MariaDB, Microsoft SQL Server, and Oracle. Minor syntax adjustments may be needed for database-specific features like AUTO_INCREMENT vs SERIAL.

Q: How do I import the SQL file into my database?

A: Use command-line tools: mysql -u username -p database_name < file.sql for MySQL, or psql -U username -d database_name -f file.sql for PostgreSQL. GUI tools like phpMyAdmin, pgAdmin, and DBeaver also support SQL file import through their import/execute menus.

Q: Are special characters and quotes handled correctly?

A: Yes, the converter properly escapes single quotes, double quotes, backslashes, and special characters to prevent SQL injection and syntax errors. Text fields are enclosed in quotes, and NULL values are handled correctly.

Q: Can I customize the table structure?

A: The generated SQL provides a basic structure. You can edit the CREATE TABLE statement to add constraints (PRIMARY KEY, FOREIGN KEY, UNIQUE), indexes, default values, or change data types (VARCHAR to TEXT, INT to BIGINT) before executing the SQL.

Q: What happens to non-table content in the ODT?

A: Regular paragraphs and text are typically converted to SQL comments (-- lines) or stored in a single text column. The conversion focuses primarily on extracting tabular data. For best results, structure your ODT content as tables.

Q: Is this useful for database backups?

A: While SQL dumps are excellent for backups, this tool is designed for document-to-database conversion. For backing up existing databases, use native tools like mysqldump, pg_dump, or database management software export features.