Convert DOCX to JSON

Drag and drop files here or click to select.
Max file size 100mb.
Uploading progress:

DOCX vs JSON Format Comparison

Aspect DOCX (Source Format) JSON (Target Format)
Format Overview
DOCX
Office Open XML Document

Microsoft Word's document format designed for word processing, with rich formatting, layouts, and multimedia support.

Binary/XML Format Document-Focused
JSON
JavaScript Object Notation

Lightweight data interchange format that's human-readable and machine-parsable. Perfect for APIs, configurations, and data storage.

Text Format Data-Focused
Technical Specifications
Structure: ZIP archive with XML files
Encoding: UTF-8/UTF-16
Media: Embedded images/objects
Schema: Office Open XML
Extensions: .docx, .docm
Structure: Key-value pairs, arrays
Encoding: UTF-8
Media: Base64 or URLs
Schema: RFC 8259 standard
Extensions: .json
Data Structure
  • Paragraphs with styles
  • Formatted text runs
  • Complex table layouts
  • Headers and footers
  • Comments and revisions
  • Embedded media files
  • Document properties
  • Objects and arrays
  • Key-value pairs
  • Nested structures
  • String, number, boolean types
  • Null values
  • No comments (pure data)
  • Metadata as properties
Advantages
  • Rich formatting options
  • Professional layouts
  • WYSIWYG editing
  • Print-ready documents
  • Collaborative features
  • Language agnostic
  • Easy to parse and generate
  • Lightweight and fast
  • Native JavaScript support
  • API-friendly format
Disadvantages
  • Requires specific software
  • Complex internal structure
  • Not human-readable raw
  • Larger file sizes
  • No native formatting
  • No visual layout
  • No comments allowed
  • Strict syntax rules
Common Uses
  • Business documents
  • Reports and proposals
  • Academic papers
  • Legal documents
  • Professional correspondence
  • REST APIs
  • Configuration files
  • Data exchange
  • Database exports
  • Application settings
Data Extraction
From DOCX Document:
  • Paragraphs with formatting
  • Heading hierarchy (H1-H6)
  • Tables with cell data
  • Lists (bullet & numbered)
  • Text styles (bold, italic)
  • Document metadata
To JSON Structure:
  • Nested objects and arrays
  • Text content preservation
  • Style information as properties
  • Table data as 2D arrays
  • Word/character statistics
  • Document properties object

Why Convert DOCX to JSON?

Converting DOCX to JSON enables programmatic access to document content, making it perfect for data processing, content management systems, search indexing, and API integration. The structured JSON output preserves document hierarchy and formatting information.

JSON Output Structure:

{
  "metadata": {
    "source_file": "document.docx",
    "conversion_time": "2024-01-01 12:00:00",
    "document_properties": {
      "paragraphs_count": 25,
      "tables_count": 3
    }
  },
  "content": {
    "paragraphs": [
      {
        "index": 0,
        "text": "Document Title",
        "style": "Heading 1",
        "type": "heading",
        "level": 1,
        "runs": [
          {
            "text": "Document Title",
            "formatting": {
              "bold": true,
              "italic": false,
              "underline": false
            }
          }
        ]
      }
    ],
    "tables": [
      {
        "index": 0,
        "rows_count": 3,
        "columns_count": 4,
        "data": [...]
      }
    ]
  },
  "statistics": {
    "total_words": 500,
    "total_characters": 2500,
    "total_headings": 5
  }
}

Use Cases:

  • Content Management: Extract document content for CMS integration
  • Data Analysis: Process document text and statistics programmatically
  • Search Indexing: Index document content for full-text search
  • API Integration: Send document data to web services
  • Migration: Move content between different systems
  • Automation: Process documents in automated workflows

Best Practices:

  • Use consistent heading styles in Word for proper hierarchy
  • Keep table structures simple for cleaner JSON output
  • Review JSON structure for your specific use case
  • Consider JSON schema validation for data integrity
  • Use JSON parsing libraries for processing the output

Working with JSON Output:

JavaScript Example:
const docData = JSON.parse(jsonString);
// Access document paragraphs
docData.content.paragraphs.forEach(para => {
    console.log(para.text);
});
// Access table data
docData.content.tables.forEach(table => {
    console.log(`Table has ${table.rows_count} rows`);
});
Python Example:
import json

with open('document.json', 'r') as file:
    doc_data = json.load(file)
    
# Access paragraphs
for para in doc_data['content']['paragraphs']:
    print(para['text'])
    
# Get statistics
stats = doc_data['statistics']
print(f"Total words: {stats['total_words']}")