Convert DOCX to JSON
Drag and drop files here or click to select.
Max file size 100mb.
Max file size 100mb.
Uploading progress:
DOCX vs JSON Format Comparison
Aspect | DOCX (Source Format) | JSON (Target Format) |
---|---|---|
Format Overview |
DOCX
Office Open XML Document
Microsoft Word's document format designed for word processing, with rich formatting, layouts, and multimedia support. Binary/XML Format Document-Focused |
JSON
JavaScript Object Notation
Lightweight data interchange format that's human-readable and machine-parsable. Perfect for APIs, configurations, and data storage. Text Format Data-Focused |
Technical Specifications |
Structure: ZIP archive with XML files
Encoding: UTF-8/UTF-16 Media: Embedded images/objects Schema: Office Open XML Extensions: .docx, .docm |
Structure: Key-value pairs, arrays
Encoding: UTF-8 Media: Base64 or URLs Schema: RFC 8259 standard Extensions: .json |
Data Structure |
|
|
Advantages |
|
|
Disadvantages |
|
|
Common Uses |
|
|
Data Extraction |
From DOCX Document:
|
To JSON Structure:
|
Why Convert DOCX to JSON?
Converting DOCX to JSON enables programmatic access to document content, making it perfect for data processing, content management systems, search indexing, and API integration. The structured JSON output preserves document hierarchy and formatting information.
JSON Output Structure:
{ "metadata": { "source_file": "document.docx", "conversion_time": "2024-01-01 12:00:00", "document_properties": { "paragraphs_count": 25, "tables_count": 3 } }, "content": { "paragraphs": [ { "index": 0, "text": "Document Title", "style": "Heading 1", "type": "heading", "level": 1, "runs": [ { "text": "Document Title", "formatting": { "bold": true, "italic": false, "underline": false } } ] } ], "tables": [ { "index": 0, "rows_count": 3, "columns_count": 4, "data": [...] } ] }, "statistics": { "total_words": 500, "total_characters": 2500, "total_headings": 5 } }
Use Cases:
- Content Management: Extract document content for CMS integration
- Data Analysis: Process document text and statistics programmatically
- Search Indexing: Index document content for full-text search
- API Integration: Send document data to web services
- Migration: Move content between different systems
- Automation: Process documents in automated workflows
Best Practices:
- Use consistent heading styles in Word for proper hierarchy
- Keep table structures simple for cleaner JSON output
- Review JSON structure for your specific use case
- Consider JSON schema validation for data integrity
- Use JSON parsing libraries for processing the output
Working with JSON Output:
JavaScript Example:
const docData = JSON.parse(jsonString); // Access document paragraphs docData.content.paragraphs.forEach(para => { console.log(para.text); }); // Access table data docData.content.tables.forEach(table => { console.log(`Table has ${table.rows_count} rows`); });
Python Example:
import json with open('document.json', 'r') as file: doc_data = json.load(file) # Access paragraphs for para in doc_data['content']['paragraphs']: print(para['text']) # Get statistics stats = doc_data['statistics'] print(f"Total words: {stats['total_words']}")