Convert DOC to SQL
Max file size 100mb.
DOC vs SQL Format Comparison
| Aspect | DOC (Source Format) | SQL (Target Format) |
|---|---|---|
| Format Overview |
DOC
Microsoft Word Binary Document
Binary document format used by Microsoft Word 97-2003. Proprietary format with rich features but closed specification. Uses OLE compound document structure. Still widely used for compatibility with older Office versions and legacy systems. Legacy Format Word 97-2003 |
SQL
Structured Query Language
Standard language for managing relational databases. SQL files contain statements for creating tables, inserting data, and querying databases. Universal format supported by MySQL, PostgreSQL, SQLite, SQL Server, Oracle, and all relational databases. Database Format Universal Standard |
| Technical Specifications |
Structure: Binary OLE compound file
Encoding: Binary with embedded metadata Format: Proprietary Microsoft format Compression: Internal compression Extensions: .doc |
Structure: Plain text statements
Encoding: UTF-8, ASCII Standard: ISO/IEC 9075 (SQL Standard) Compression: None (plain text) Extensions: .sql |
| Syntax Examples |
DOC uses binary format (not human-readable): [Binary Data] D0CF11E0A1B11AE1... (OLE compound document) Not human-readable |
SQL uses structured statements: CREATE TABLE employees ( id INT PRIMARY KEY, name VARCHAR(100), email VARCHAR(255) ); INSERT INTO employees VALUES (1, 'John Smith', '[email protected]'); INSERT INTO employees VALUES (2, 'Jane Doe', '[email protected]'); |
| Content Support |
|
|
| Advantages |
|
|
| Disadvantages |
|
|
| Common Uses |
|
|
| Best For |
|
|
| Version History |
Introduced: 1997 (Word 97)
Last Version: Word 2003 format Status: Legacy (replaced by DOCX in 2007) Evolution: No longer actively developed |
Introduced: 1970s (IBM)
Standard: ISO/IEC 9075 (SQL:2023) Status: Active, universal adoption Evolution: Regular standard updates |
| Software Support |
Microsoft Word: All versions (read/write)
LibreOffice: Full support Google Docs: Full support Other: Most modern word processors |
MySQL: Full support
PostgreSQL: Full support SQLite: Full support SQL Server: Full support |
Why Convert DOC to SQL?
Converting DOC documents to SQL format is essential when you need to import tabular data from Word documents directly into a database. SQL provides the standard language for inserting data into MySQL, PostgreSQL, SQLite, SQL Server, and all relational databases.
SQL (Structured Query Language) has been the standard for relational databases since the 1970s. It provides a universal way to create tables, insert data, and manage database structures that works across all major database systems.
When you convert DOC to SQL, tables from the Word document are transformed into CREATE TABLE and INSERT statements. This allows you to directly execute the SQL file in any database client to import the data.
Key Benefits of Converting DOC to SQL:
- Direct Database Import: Execute SQL file to populate tables
- Schema Generation: CREATE TABLE statements from headers
- Universal Compatibility: Works with all SQL databases
- Version Control: SQL files work with Git
- Data Migration: Move data between different systems
- Seed Data: Create test data for development
- Batch Processing: Import many records at once
Practical Examples
Example 1: Employee Data
Input DOC file (employees.doc) - Table content:
Employee Directory | ID | Name | Department | Email | Salary | |-----|-------------|------------|--------------------|---------| | 1 | John Smith | Sales | [email protected] | 55000 | | 2 | Jane Doe | Marketing | [email protected] | 62000 | | 3 | Bob Wilson | IT | [email protected] | 75000 |
Output SQL file (employees.sql):
-- Employee Directory
-- Generated from employees.doc
CREATE TABLE IF NOT EXISTS employees (
id INT PRIMARY KEY,
name VARCHAR(255),
department VARCHAR(255),
email VARCHAR(255),
salary DECIMAL(10,2)
);
INSERT INTO employees (id, name, department, email, salary) VALUES
(1, 'John Smith', 'Sales', '[email protected]', 55000.00),
(2, 'Jane Doe', 'Marketing', '[email protected]', 62000.00),
(3, 'Bob Wilson', 'IT', '[email protected]', 75000.00);
Example 2: Product Catalog
Input DOC file (products.doc) - Table content:
Product Catalog | SKU | Name | Category | Price | Stock | |---------|----------------|-------------|---------|-------| | SKU001 | Laptop Pro | Electronics | 999.99 | 50 | | SKU002 | Wireless Mouse | Accessories | 29.99 | 200 | | SKU003 | USB Hub | Accessories | 49.99 | 150 |
Output SQL file (products.sql):
-- Product Catalog
-- Generated from products.doc
CREATE TABLE IF NOT EXISTS products (
sku VARCHAR(50) PRIMARY KEY,
name VARCHAR(255) NOT NULL,
category VARCHAR(100),
price DECIMAL(10,2),
stock INT DEFAULT 0
);
INSERT INTO products (sku, name, category, price, stock) VALUES
('SKU001', 'Laptop Pro', 'Electronics', 999.99, 50),
('SKU002', 'Wireless Mouse', 'Accessories', 29.99, 200),
('SKU003', 'USB Hub', 'Accessories', 49.99, 150);
Example 3: Customer Orders
Input DOC file (orders.doc) - Table content:
Order History | Order ID | Customer | Date | Total | Status | |----------|--------------|------------|---------|-----------| | ORD-001 | Alice Brown | 2024-01-15 | 150.00 | Completed | | ORD-002 | Charlie Lee | 2024-01-16 | 89.99 | Pending | | ORD-003 | Diana Ross | 2024-01-17 | 275.50 | Shipped |
Output SQL file (orders.sql):
-- Order History
-- Generated from orders.doc
CREATE TABLE IF NOT EXISTS orders (
order_id VARCHAR(50) PRIMARY KEY,
customer VARCHAR(255) NOT NULL,
order_date DATE,
total DECIMAL(10,2),
status VARCHAR(50)
);
INSERT INTO orders (order_id, customer, order_date, total, status) VALUES
('ORD-001', 'Alice Brown', '2024-01-15', 150.00, 'Completed'),
('ORD-002', 'Charlie Lee', '2024-01-16', 89.99, 'Pending'),
('ORD-003', 'Diana Ross', '2024-01-17', 275.50, 'Shipped');
Frequently Asked Questions (FAQ)
Q: What is SQL?
A: SQL (Structured Query Language) is the standard language for relational database management. SQL files contain statements for creating tables, inserting data, updating records, and querying information. It's supported by all major databases including MySQL, PostgreSQL, SQLite, and SQL Server.
Q: What type of SQL statements are generated?
A: The conversion generates CREATE TABLE statements (defining table structure from column headers) and INSERT INTO statements (for each row of data). The output is compatible with standard SQL and works with most databases.
Q: Which databases can I import the SQL into?
A: The generated SQL is compatible with MySQL, MariaDB, PostgreSQL, SQLite, SQL Server, Oracle, and other SQL-compliant databases. Some syntax adjustments may be needed for specific database features.
Q: How are data types determined?
A: Data types are inferred from the column content. Numeric values become INT or DECIMAL, dates become DATE, and text becomes VARCHAR. You can modify the CREATE TABLE statement to use specific data types for your needs.
Q: What about special characters in data?
A: Special characters like quotes and backslashes are properly escaped in the SQL output. Single quotes become '', and other special characters are handled according to SQL standards to prevent syntax errors.
Q: Can I customize the table name?
A: The table name is derived from the document or table title. You can easily edit the SQL file to change the table name before importing. Just modify the CREATE TABLE and INSERT INTO statements.
Q: How do I import the SQL file?
A: Use your database client to execute the SQL file. For MySQL: mysql database < file.sql. For PostgreSQL: psql database < file.sql. Most database GUI tools (phpMyAdmin, pgAdmin, DBeaver) also have import options.
Q: Are foreign keys and indexes included?
A: The basic conversion creates primary keys from ID columns if detected. Foreign keys and indexes are not automatically generated as they require understanding of table relationships. You can add these manually to the SQL file.